slug
type
status
category
date
summary
tags
password
icon
要高效备考 美国数学竞赛 AMC(尤其是 AMC 8 / AMC 10 / AMC 12),核心是 “按考点分解 → 方法熟练化 → 真题模拟”,在有限时间里做到知识、技巧、心态三方面同步提升。我给你分成六个步骤,每一步都对应具体方法和时间分配(可按你的水平调整)。

1. 明确比赛特点与目标分数

  • AMC 8:初中难度,重点是基础数论、组合、几何、代数。时间紧(40 分钟 25 题),需要快速计算。
  • AMC 10/12:难度更高,覆盖高中竞赛数学,涉及更深的数论、组合、解析几何、函数性质等。
  • 目标分数决定策略:
    • 冲击 AIME 资格(AMC10 ≥ 103.5 / AMC12 ≥ 93)→ 要追求高准确率+全覆盖。
    • 稳定中高分 → 要抓易中题+快速放弃陷阱题。

2. 考点体系化

AMC 的考点是有固定分布的,可以按题源分:
模块
占比(AMC10/12)
常见题型
数论
25% 左右
余数、整除、同余、质数分解、位数和、模运算
组合与概率
25% 左右
排列组合、容斥、递推、概率模型、生成函数基础
几何
25% 左右
相似与全等、圆、面积比例、坐标几何
代数与函数
20% 左右
多项式、函数性质、不等式、方程技巧
杂项与技巧题
5-10%
特殊构造、数学归纳、逻辑推理
建议用 Excel 或 Notion 做一个 AMC 知识点表,把每道错题归类到具体知识点,方便查漏补缺。
The American Mathematics Competitions (AMC) covers a broad set of middle–high school mathematics topics, but the exact scope depends on the level:
  • AMC 8 – for grades 8 and below
  • AMC 10 – for grades 10 and below
  • AMC 12 – for grades 12 and below
Here’s a topic breakdown based on official AMC guidelines and past problems.

1. Arithmetic & Number Theory

  • Integers, factors, multiples, prime numbers
  • Greatest common divisor (GCD), least common multiple (LCM)
  • Modular arithmetic (remainders)
  • Divisibility rules
  • Base systems (binary, base-n conversions)
  • Perfect squares, cubes, and other special numbers
  • Rational numbers, decimals, repeating patterns
  • Sequences & series (arithmetic, geometric, special sequences)
  • Properties of remainders and residues

2. Algebra

  • Algebraic expressions, polynomials, factoring, expansion
  • Equations and inequalities (linear, quadratic, systems)
  • Rational expressions & equations
  • Exponents and radicals
  • Absolute value equations/inequalities
  • Functions: evaluation, composition, inverses (basic)
  • Symmetry and transformations of graphs
  • Special factorizations (a2−b2,a3+b3,etc.)(a^2 - b^2, a^3 + b^3, etc.)
  • Simple functional equations
  • AM–GM inequality, Cauchy–Schwarz (more in AMC 12)

3. Counting & Combinatorics

  • Basic counting principles (addition & multiplication)
  • Permutations & combinations
  • Binomial theorem (expansion & coefficients)
  • Probability (classical, conditional, complementary counting)
  • Pascal’s Triangle patterns
  • Inclusion–exclusion principle
  • Pigeonhole principle
  • Arrangements with restrictions
  • Circular permutations

4. Geometry

  • Triangles (types, congruence, similarity, Pythagorean theorem)
  • Circles (chords, tangents, arcs, inscribed angles, power of a point)
  • Quadrilaterals & polygons (area, angle sums, special types)
  • Coordinate geometry (distance, midpoint, slope, equation of a line)
  • Transformations (reflections, rotations, translations, dilations)
  • 3D geometry (prisms, pyramids, spheres, volume, surface area)
  • Trigonometry basics (ratios, law of sines/cosines for AMC 12)
  • Geometric loci & constructions
  • Symmetry and tessellations

5. Logic & Problem-Solving Strategies

  • Pattern recognition
  • Working backwards
  • Guess and check with elimination
  • Extremal principle (largest/smallest values)
  • Mathematical induction (AMC 12)
  • Constructive algorithms

6. Advanced Topics (Mostly AMC 12)

  • More advanced trigonometry (identities, multiple angles)
  • Complex numbers in algebra & geometry
  • Vectors in the plane
  • Polynomials (roots, Vieta’s formulas, transformations)
  • Inequalities beyond basics (Jensen’s, Cauchy–Schwarz)
  • Partial fraction decomposition
  • Recursion and generating functions (rare but possible)

💡 Difficulty progression:
  • AMC 8: Focus on basic arithmetic, introductory algebra, geometry, and combinatorics.
  • AMC 10: Adds more algebra, number theory, and deeper geometry.
  • AMC 12: Includes higher-level algebra, advanced number theory, and trigonometry.

If you want, I can make you a detailed AMC topic checklist with example problem types for each category so you can track your preparation efficiently. That would make practice much more structured.

3. 基础知识快速巩固(2~3 周)

  • 选一本 AMC 常用教材(如 Art of Problem Solving 系列 AoPS Prealgebra / Algebra / Geometry / Number Theory / Counting & Probability)。
  • 每天做少量高质量例题(每类 2-3 题),重点掌握:
    • 常用结论(如模运算公式、三角函数特殊值、组合数恒等式)
    • 常见构造方法(如补集法、对称法、极端原理)
  • 错题本 + 知识卡片(Anki) 固化记忆。
 

AoPS专题训练

https://artofproblemsolving.com/wiki/ (输入Combinatorics等关键词),可以找到分类真题!!!
示例:
  1. https://artofproblemsolving.com/wiki/index.php/Combinatorics
  1. https://artofproblemsolving.com/wiki/index.php/Category:Introductory_Combinatorics_Problems
  1. https://artofproblemsolving.com/wiki/index.php/Complex_number
  1. https://artofproblemsolving.com/wiki/index.php/Function
  1. https://artofproblemsolving.com/wiki/index.php/Probability

4. 提升解题速度与技巧(3~4 周)

AMC 限时解题,速度很重要:
  • 限时训练:一次做 5 题,定时 10~12 分钟,强迫快速思考。
  • 估算与排除法:能口算或快速估算的不要代数化;遇到难题先排除不可能选项。
  • 跳题策略
    • 先做前 15 题(通常较简单),保证全对。
    • 后面先找自己擅长的题型(如几何),最后再碰最难的。
  • 常用技巧:坐标化几何、代换简化、构造对称、反证、拆点法、方程化数论等。

5. 真题模拟与分析(4~6 周)

  • 近 10 年 AMC 真题 开始做(可用 AoPS 题库 / amc-pastpapers)。
  • 模拟时必须:
      1. 严格限时(AMC8:40 分钟;AMC10/12:75 分钟)。
      1. 模拟考试环境(不用草稿以外资料)。
      1. 做完立刻分类分析错题(是知识不会?方法不会?粗心?时间不够?)。
  • 错题二次训练
    • 当天再做一次相似题。
    • 一周后回顾同类题,确保不会再错。

6. 心态与考试策略

  • AMC 评分机制:错题倒扣分(1.5 分 → 0 分),所以不会的题要果断放弃,避免瞎猜。
  • 考前一周做 2~3 次完整模拟,适应节奏。
  • 考试中:
    • 前 5 分钟快速扫题,先做秒杀题。
    • 不陷入长时间计算,超过 4 分钟直接跳。
    • 最后 5 分钟做全局检查,防止低级错误。

推荐备考资源

  • 教材
    • AoPS 系列(Counting & Probability / Number Theory / Geometry / Algebra)
    • 《USA Mathematical Talent Search Problems and Solutions》
  • 题库
    • AoPS 在线题库(免费的 Past Contest Problems)
    • AMC 竞赛真题 PDF(amc.maa.org 官网)
  • 训练平台
    • Art of Problem Solving (AoPS) Online
    • Brilliant.org(概念+小测)
    • 数学竞赛宝 / Math Kangaroo CN(中文整理)
 
 
 
 


1. Understand the Contest Format & Your Target Score

  • AMC 8: Middle-school level, focuses on basic number theory, combinatorics, geometry, and algebra. Short time limit (40 minutes, 25 questions), requires fast calculation.
  • AMC 10/12: Higher difficulty, covers high-school competition math, including deeper number theory, combinatorics, analytic geometry, and functions.
  • Target score affects your strategy:
    • AIME qualification goal (AMC10 ≥ 103.5 / AMC12 ≥ 93) → aim for high accuracy + full coverage.
    • Stable mid-high score → secure easy and medium problems first, skip traps.

2. Systematize the Syllabus

AMC problems follow a stable distribution of topics:
Topic
Share (AMC10/12)
Common Question Types
Number Theory
~25%
Remainders, divisibility, congruences, prime factorization, digit sums, modular arithmetic
Combinatorics & Probability
~25%
Permutations, combinations, inclusion-exclusion, recursion, probability models, basic generating functions
Geometry
~25%
Similarity/congruence, circles, area ratios, coordinate geometry
Algebra & Functions
~20%
Polynomials, function properties, inequalities, equation techniques
Miscellaneous & Creative
5–10%
Special constructions, induction, logic puzzles
Tip: Use Excel or Notion to build a “topic checklist” and classify every mistake into its exact topic — great for spotting gaps.

3. Rapidly Consolidate the Basics (2–3 weeks)

  • Choose a standard AMC prep series (e.g., Art of Problem Solving Prealgebra / Algebra / Geometry / Number Theory / Counting & Probability).
  • Do a few high-quality examples per topic daily (2–3 per category), focusing on:
    • Key formulas & theorems (e.g., modular formulas, special triangle ratios, binomial identities)
    • Standard methods (e.g., complement counting, symmetry, extreme principle)
  • Use a mistake log + spaced repetition flashcards (Anki) to lock in concepts.

4. Improve Problem-Solving Speed & Tricks (3–4 weeks)

AMC is timed — speed matters:
  • Timed drills: Do 5 problems in 10–12 minutes to force fast thinking.
  • Estimation & elimination: If you can solve mentally or estimate, don’t fully algebra-ize; use elimination for multiple choice.
  • Skipping strategy:
    • First clear the first 15 problems (usually easier).
    • Then solve topics you’re strongest in (e.g., geometry), save the hardest for last.
  • Common tricks: Coordinate bash for geometry, variable substitution, symmetry construction, proof by contradiction, transforming number theory into equations.

5. Past Papers & Deep Review (4–6 weeks)

  • Start with the past 10 years of AMC papers (AoPS or official MAA archive).
  • When simulating:
      1. Strict timing (AMC8: 40 mins; AMC10/12: 75 mins)
      1. Real exam setting (no outside references)
      1. Classify errors immediately — knowledge gap? wrong method? careless? time issue?
  • Error recycling:
    • Redo similar problems the same day.
    • Revisit in 1 week to ensure retention.

6. Mindset & Test-Day Strategy

  • AMC scoring: Wrong answers lose points (from 1.5 → 0), so skip if truly unsure — don’t guess randomly.
  • In the last week, do 2–3 full simulations to lock in pacing.
  • In the contest:
    • First 5 min: scan for “fast kills”.
    • Never spend >4 minutes stuck — skip and return.
    • Last 5 min: check for silly mistakes.

Recommended Resources

  • Books:
    • AoPS Series (Counting & Probability, Number Theory, Geometry, Algebra)
    • USA Mathematical Talent Search Problems and Solutions
  • Problem banks:
    • AoPS online past problem database
    • MAA AMC official PDFs
  • Training platforms:
    • Art of Problem Solving (AoPS) Online
    • Brilliant.org (concepts + quizzes)
    • Math Kangaroo CN / other curated problem sets

If you want, I can also prepare a 12-week AMC crash plan with weekly topic focus + daily problem quotas + past-paper scheduling, so you can just follow it step-by-step for maximum efficiency.

 
ilcoxon Signed-Rank Test in Details高中心理学国际竞赛
Loading...
现代数学启蒙
现代数学启蒙
推广现代数学🍚
最新发布
如何高效备考AMC 10/12
2025-8-8
高中经济学国际竞赛
2025-8-7
高中心理学国际竞赛
2025-8-7
高中计算机国际竞赛
2025-8-7
高中英语国际竞赛
2025-8-7
高中生物国际竞赛
2025-8-7
公告
🎉现代数学启蒙(MME:Modern Mathematics Enlightenment)欢迎您🎉
-- 感谢您的支持 ---