slug
type
status
category
date
summary
tags
password
icon
要高效备考 美国数学竞赛 AMC(尤其是 AMC 8 / AMC 10 / AMC 12),核心是 “按考点分解 → 方法熟练化 → 真题模拟”,在有限时间里做到知识、技巧、心态三方面同步提升。我给你分成六个步骤,每一步都对应具体方法和时间分配(可按你的水平调整)。
1. 明确比赛特点与目标分数
- AMC 8:初中难度,重点是基础数论、组合、几何、代数。时间紧(40 分钟 25 题),需要快速计算。
- AMC 10/12:难度更高,覆盖高中竞赛数学,涉及更深的数论、组合、解析几何、函数性质等。
- 目标分数决定策略:
- 冲击 AIME 资格(AMC10 ≥ 103.5 / AMC12 ≥ 93)→ 要追求高准确率+全覆盖。
- 稳定中高分 → 要抓易中题+快速放弃陷阱题。
2. 考点体系化
AMC 的考点是有固定分布的,可以按题源分:
模块 | 占比(AMC10/12) | 常见题型 |
数论 | 25% 左右 | 余数、整除、同余、质数分解、位数和、模运算 |
组合与概率 | 25% 左右 | 排列组合、容斥、递推、概率模型、生成函数基础 |
几何 | 25% 左右 | 相似与全等、圆、面积比例、坐标几何 |
代数与函数 | 20% 左右 | 多项式、函数性质、不等式、方程技巧 |
杂项与技巧题 | 5-10% | 特殊构造、数学归纳、逻辑推理 |
建议用 Excel 或 Notion 做一个 AMC 知识点表,把每道错题归类到具体知识点,方便查漏补缺。
The American Mathematics Competitions (AMC) covers a broad set of middle–high school mathematics topics, but the exact scope depends on the level:
- AMC 8 – for grades 8 and below
- AMC 10 – for grades 10 and below
- AMC 12 – for grades 12 and below
Here’s a topic breakdown based on official AMC guidelines and past problems.
1. Arithmetic & Number Theory
- Integers, factors, multiples, prime numbers
- Greatest common divisor (GCD), least common multiple (LCM)
- Modular arithmetic (remainders)
- Divisibility rules
- Base systems (binary, base-n conversions)
- Perfect squares, cubes, and other special numbers
- Rational numbers, decimals, repeating patterns
- Sequences & series (arithmetic, geometric, special sequences)
- Properties of remainders and residues
2. Algebra
- Algebraic expressions, polynomials, factoring, expansion
- Equations and inequalities (linear, quadratic, systems)
- Rational expressions & equations
- Exponents and radicals
- Absolute value equations/inequalities
- Functions: evaluation, composition, inverses (basic)
- Symmetry and transformations of graphs
- Special factorizations (a2−b2,a3+b3,etc.)(a^2 - b^2, a^3 + b^3, etc.)
- Simple functional equations
- AM–GM inequality, Cauchy–Schwarz (more in AMC 12)
3. Counting & Combinatorics
- Basic counting principles (addition & multiplication)
- Permutations & combinations
- Binomial theorem (expansion & coefficients)
- Probability (classical, conditional, complementary counting)
- Pascal’s Triangle patterns
- Inclusion–exclusion principle
- Pigeonhole principle
- Arrangements with restrictions
- Circular permutations
4. Geometry
- Triangles (types, congruence, similarity, Pythagorean theorem)
- Circles (chords, tangents, arcs, inscribed angles, power of a point)
- Quadrilaterals & polygons (area, angle sums, special types)
- Coordinate geometry (distance, midpoint, slope, equation of a line)
- Transformations (reflections, rotations, translations, dilations)
- 3D geometry (prisms, pyramids, spheres, volume, surface area)
- Trigonometry basics (ratios, law of sines/cosines for AMC 12)
- Geometric loci & constructions
- Symmetry and tessellations
5. Logic & Problem-Solving Strategies
- Pattern recognition
- Working backwards
- Guess and check with elimination
- Extremal principle (largest/smallest values)
- Mathematical induction (AMC 12)
- Constructive algorithms
6. Advanced Topics (Mostly AMC 12)
- More advanced trigonometry (identities, multiple angles)
- Complex numbers in algebra & geometry
- Vectors in the plane
- Polynomials (roots, Vieta’s formulas, transformations)
- Inequalities beyond basics (Jensen’s, Cauchy–Schwarz)
- Partial fraction decomposition
- Recursion and generating functions (rare but possible)
💡 Difficulty progression:
- AMC 8: Focus on basic arithmetic, introductory algebra, geometry, and combinatorics.
- AMC 10: Adds more algebra, number theory, and deeper geometry.
- AMC 12: Includes higher-level algebra, advanced number theory, and trigonometry.
If you want, I can make you a detailed AMC topic checklist with example problem types for each category so you can track your preparation efficiently. That would make practice much more structured.
3. 基础知识快速巩固(2~3 周)
- 选一本 AMC 常用教材(如 Art of Problem Solving 系列 AoPS Prealgebra / Algebra / Geometry / Number Theory / Counting & Probability)。
- 每天做少量高质量例题(每类 2-3 题),重点掌握:
- 常用结论(如模运算公式、三角函数特殊值、组合数恒等式)
- 常见构造方法(如补集法、对称法、极端原理)
- 用 错题本 + 知识卡片(Anki) 固化记忆。
AoPS专题训练
https://artofproblemsolving.com/wiki/ (输入Combinatorics等关键词),可以找到分类真题!!!
示例:
4. 提升解题速度与技巧(3~4 周)
AMC 限时解题,速度很重要:
- 限时训练:一次做 5 题,定时 10~12 分钟,强迫快速思考。
- 估算与排除法:能口算或快速估算的不要代数化;遇到难题先排除不可能选项。
- 跳题策略:
- 先做前 15 题(通常较简单),保证全对。
- 后面先找自己擅长的题型(如几何),最后再碰最难的。
- 常用技巧:坐标化几何、代换简化、构造对称、反证、拆点法、方程化数论等。
5. 真题模拟与分析(4~6 周)
- 从 近 10 年 AMC 真题 开始做(可用 AoPS 题库 / amc-pastpapers)。
- 模拟时必须:
- 严格限时(AMC8:40 分钟;AMC10/12:75 分钟)。
- 模拟考试环境(不用草稿以外资料)。
- 做完立刻分类分析错题(是知识不会?方法不会?粗心?时间不够?)。
- 错题二次训练:
- 当天再做一次相似题。
- 一周后回顾同类题,确保不会再错。
6. 心态与考试策略
- AMC 评分机制:错题倒扣分(1.5 分 → 0 分),所以不会的题要果断放弃,避免瞎猜。
- 考前一周做 2~3 次完整模拟,适应节奏。
- 考试中:
- 前 5 分钟快速扫题,先做秒杀题。
- 不陷入长时间计算,超过 4 分钟直接跳。
- 最后 5 分钟做全局检查,防止低级错误。
推荐备考资源
- 教材:
- AoPS 系列(Counting & Probability / Number Theory / Geometry / Algebra)
- 《USA Mathematical Talent Search Problems and Solutions》
- 题库:
- AoPS 在线题库(免费的 Past Contest Problems)
- AMC 竞赛真题 PDF(amc.maa.org 官网)
- 训练平台:
- Art of Problem Solving (AoPS) Online
- Brilliant.org(概念+小测)
- 数学竞赛宝 / Math Kangaroo CN(中文整理)
1. Understand the Contest Format & Your Target Score
- AMC 8: Middle-school level, focuses on basic number theory, combinatorics, geometry, and algebra. Short time limit (40 minutes, 25 questions), requires fast calculation.
- AMC 10/12: Higher difficulty, covers high-school competition math, including deeper number theory, combinatorics, analytic geometry, and functions.
- Target score affects your strategy:
- AIME qualification goal (AMC10 ≥ 103.5 / AMC12 ≥ 93) → aim for high accuracy + full coverage.
- Stable mid-high score → secure easy and medium problems first, skip traps.
2. Systematize the Syllabus
AMC problems follow a stable distribution of topics:
Topic | Share (AMC10/12) | Common Question Types |
Number Theory | ~25% | Remainders, divisibility, congruences, prime factorization, digit sums, modular arithmetic |
Combinatorics & Probability | ~25% | Permutations, combinations, inclusion-exclusion, recursion, probability models, basic generating functions |
Geometry | ~25% | Similarity/congruence, circles, area ratios, coordinate geometry |
Algebra & Functions | ~20% | Polynomials, function properties, inequalities, equation techniques |
Miscellaneous & Creative | 5–10% | Special constructions, induction, logic puzzles |
Tip: Use Excel or Notion to build a “topic checklist” and classify every mistake into its exact topic — great for spotting gaps.
3. Rapidly Consolidate the Basics (2–3 weeks)
- Choose a standard AMC prep series (e.g., Art of Problem Solving Prealgebra / Algebra / Geometry / Number Theory / Counting & Probability).
- Do a few high-quality examples per topic daily (2–3 per category), focusing on:
- Key formulas & theorems (e.g., modular formulas, special triangle ratios, binomial identities)
- Standard methods (e.g., complement counting, symmetry, extreme principle)
- Use a mistake log + spaced repetition flashcards (Anki) to lock in concepts.
4. Improve Problem-Solving Speed & Tricks (3–4 weeks)
AMC is timed — speed matters:
- Timed drills: Do 5 problems in 10–12 minutes to force fast thinking.
- Estimation & elimination: If you can solve mentally or estimate, don’t fully algebra-ize; use elimination for multiple choice.
- Skipping strategy:
- First clear the first 15 problems (usually easier).
- Then solve topics you’re strongest in (e.g., geometry), save the hardest for last.
- Common tricks: Coordinate bash for geometry, variable substitution, symmetry construction, proof by contradiction, transforming number theory into equations.
5. Past Papers & Deep Review (4–6 weeks)
- Start with the past 10 years of AMC papers (AoPS or official MAA archive).
- When simulating:
- Strict timing (AMC8: 40 mins; AMC10/12: 75 mins)
- Real exam setting (no outside references)
- Classify errors immediately — knowledge gap? wrong method? careless? time issue?
- Error recycling:
- Redo similar problems the same day.
- Revisit in 1 week to ensure retention.
6. Mindset & Test-Day Strategy
- AMC scoring: Wrong answers lose points (from 1.5 → 0), so skip if truly unsure — don’t guess randomly.
- In the last week, do 2–3 full simulations to lock in pacing.
- In the contest:
- First 5 min: scan for “fast kills”.
- Never spend >4 minutes stuck — skip and return.
- Last 5 min: check for silly mistakes.
Recommended Resources
- Books:
- AoPS Series (Counting & Probability, Number Theory, Geometry, Algebra)
- USA Mathematical Talent Search Problems and Solutions
- Problem banks:
- AoPS online past problem database
- MAA AMC official PDFs
- Training platforms:
- Art of Problem Solving (AoPS) Online
- Brilliant.org (concepts + quizzes)
- Math Kangaroo CN / other curated problem sets
If you want, I can also prepare a 12-week AMC crash plan with weekly topic focus + daily problem quotas + past-paper scheduling, so you can just follow it step-by-step for maximum efficiency.
- 作者:现代数学启蒙
- 链接:https://www.math1234567.com/article/AMCpreparation
- 声明:本文采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。